Gene subset selection in microarray data using entropic filtering for cancer classification
: In this work an entropic filtering algorithm (EFA) for feature selection is described, as a workable method to generate a relevant subset of genes. This is a fast feature selection method based on finding feature subsets that jointly maximize the normalized multivariate conditional entropy with re...
Gespeichert in:
Veröffentlicht in: | Expert systems 2009-02, Vol.26 (1), p.113-124 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | : In this work an entropic filtering algorithm (EFA) for feature selection is described, as a workable method to generate a relevant subset of genes. This is a fast feature selection method based on finding feature subsets that jointly maximize the normalized multivariate conditional entropy with respect to the classification ability of tumours. The EFA is tested in combination with several machine learning algorithms on five public domain microarray data sets. It is found that this combination offers subsets yielding similar or much better accuracies than using the full set of genes. The solutions obtained are of comparable quality to previous results, but they are obtained in a maximum of half an hour computing time and use a very low number of genes. |
---|---|
ISSN: | 0266-4720 1468-0394 |
DOI: | 10.1111/j.1468-0394.2008.00489.x |