Prefrontal cortex as a meta-reinforcement learning system
Over the past 20 years, neuroscience research on reward-based learning has converged on a canonical model, under which the neurotransmitter dopamine ‘stamps in’ associations between situations, actions and rewards by modulating the strength of synaptic connections between neurons. However, a growing...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2018-06, Vol.21 (6), p.860-868 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Over the past 20 years, neuroscience research on reward-based learning has converged on a canonical model, under which the neurotransmitter dopamine ‘stamps in’ associations between situations, actions and rewards by modulating the strength of synaptic connections between neurons. However, a growing number of recent findings have placed this standard model under strain. We now draw on recent advances in artificial intelligence to introduce a new theory of reward-based learning. Here, the dopamine system trains another part of the brain, the prefrontal cortex, to operate as its own free-standing learning system. This new perspective accommodates the findings that motivated the standard model, but also deals gracefully with a wider range of observations, providing a fresh foundation for future research.
Humans and other mammals are prodigious learners, partly because they also ‘learn how to learn’. Wang and colleagues present a new theory showing how learning to learn may arise from interactions between prefrontal cortex and the dopamine system. |
---|---|
ISSN: | 1097-6256 1546-1726 |
DOI: | 10.1038/s41593-018-0147-8 |