Recent advances in DNA nanotechnology
•New assembly approaches of DNA nanostructures with increased complexity.•Biotechnological approaches for improved scalability of DNA assembly.•Blunt-end stacking as an emerging tool for directional DNA assembly.•Directional assembly of hydrophobic interactions on DNA scaffolds.•Applications of DNA...
Gespeichert in:
Veröffentlicht in: | Current opinion in chemical biology 2018-10, Vol.46, p.63-70 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •New assembly approaches of DNA nanostructures with increased complexity.•Biotechnological approaches for improved scalability of DNA assembly.•Blunt-end stacking as an emerging tool for directional DNA assembly.•Directional assembly of hydrophobic interactions on DNA scaffolds.•Applications of DNA nanomaterials in molecular templating and lipid-interfaces.
DNA is a powerful guiding molecule to achieve the precise construction of arbitrary structures and high-resolution organization of functional materials. The combination of sequence programmability, rigidity and highly specific molecular recognition in this molecule has resulted in a wide range of exquisitely designed DNA frameworks. To date, the impressive potential of DNA nanomaterials has been demonstrated from fundamental research to technological advancements in materials science and biomedicine. This review presents a summary of some of the most recent developments in structural DNA nanotechnology regarding new assembly approaches and efforts in translating DNA nanomaterials into practical use. Recent work on incorporating blunt-end stacking and hydrophobic interactions as orthogonal instruction rules in DNA assembly, and several emerging applications of DNA nanomaterials will also be highlighted. |
---|---|
ISSN: | 1367-5931 1879-0402 |
DOI: | 10.1016/j.cbpa.2018.04.012 |