The impact of changing climate on phenology, productivity, and benthic–pelagic coupling in Narragansett Bay

The timing and magnitude of phytoplankton blooms have changed markedly in Narragansett Bay, RI (USA) over the last half century. The traditional winter–spring bloom has decreased or, in many years, disappeared. Relatively short, often intense, diatom blooms have become common in spring, summer, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Estuarine, coastal and shelf science coastal and shelf science, 2009-03, Vol.82 (1), p.1-18
Hauptverfasser: Nixon, Scott W., Fulweiler, Robinson W., Buckley, Betty A., Granger, Stephen L., Nowicki, Barbara L., Henry, Kelly M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The timing and magnitude of phytoplankton blooms have changed markedly in Narragansett Bay, RI (USA) over the last half century. The traditional winter–spring bloom has decreased or, in many years, disappeared. Relatively short, often intense, diatom blooms have become common in spring, summer, and fall replacing the summer flagellate blooms of the past. The annual and summer mean abundance (cell counts) and biomass (chl a) of phytoplankton appear to have decreased based on almost 50 years of biweekly monitoring by others at a mid bay station. These changes have been related to warming of the water, especially during winter, and to increased cloudiness. A significant decline in the winter wind speed may also have played a role. The changes in the phenology of the phytoplankton and the oligotrophication of the bay appear to have decreased greatly the quantity and (perhaps) quality of the organic matter being deposited on the bottom of the bay. This decline has resulted in a very much reduced benthic metabolism as reflected in oxygen uptake, nutrient regeneration, and the magnitude and direction of the net flux of N 2 gas. Based on many decades of standard weekly trawls carried out by the Graduate School of Oceanography, the winter biomass of bottom feeding epibenthic animals has also declined sharply at the mid bay station. After decades of relatively constant anthropogenic nitrogen loading (and declining phosphorus loading), the fertilization of the bay will soon be reduced during May–October due to implementation of advanced wastewater treatment. This is intended to produce an oligotrophication of the urban Providence River estuary and the Upper Bay. The anticipated decline in the productivity of the upper bay region will probably decrease summer hypoxia in that area. However, it may have unanticipated consequences for secondary production in the mid and lower bay where climate-induced oligotrophication has already much weakened the historically strong benthic–pelagic coupling.
ISSN:0272-7714
1096-0015
DOI:10.1016/j.ecss.2008.12.016