Deletion of the Aryl Hydrocarbon Receptor-associated Protein 9 Leads to Cardiac Malformation and Embryonic Lethality

The aryl hydrocarbon receptor-associated protein 9, ARA9 (also known as XAP2 or AIP1), is a chaperone that is found in complexes with certain xenobiotic receptors, such as the aryl hydrocarbon receptor (AHR) and the peroxisome proliferator-activated receptor α (PPARα). In an effort to better underst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2007-12, Vol.282 (49), p.35924-35932
Hauptverfasser: Lin, Bernice C., Sullivan, Ruth, Lee, Youngsook, Moran, Susan, Glover, Edward, Bradfield, Christopher A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aryl hydrocarbon receptor-associated protein 9, ARA9 (also known as XAP2 or AIP1), is a chaperone that is found in complexes with certain xenobiotic receptors, such as the aryl hydrocarbon receptor (AHR) and the peroxisome proliferator-activated receptor α (PPARα). In an effort to better understand the physiological role of ARA9 outside of its role in xenobiotic signal transduction, we generated a null allele at the Ara9 locus in mice. Mice with a homozygous deletion of this gene die at various time points throughout embryonic development. Embryonic lethality is accompanied by decreased blood flow to head and limbs, as well as a range of heart deformations, including double outlet right ventricle, ventricular-septal defects, and pericardial edema. The early cardiovascular defects observed in Ara9-null mice suggest an essential role for the ARA9 protein in cardiac development. The observation that the developmental aberrations in Ara9-null mice are distinct from those observed for disrupted alleles at Ahr or Pparα indicates that the role of ARA9 in cardiac development is independent of its interactions with its known xenobiotic receptor partners.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M705471200