Perovskite–Perovskite Homojunctions via Compositional Doping

One of the most important properties of semiconductors is the possibility of controlling their electronic behavior via intentional doping. Despite the unprecedented progress in the understanding of hybrid metal halide perovskites, extrinsic doping of perovskite remains nearly unexplored and perovski...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2018-06, Vol.9 (11), p.2770-2775
Hauptverfasser: Dänekamp, Benedikt, Müller, Christian, Sendner, Michael, Boix, Pablo P, Sessolo, Michele, Lovrincic, Robert, Bolink, Henk J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the most important properties of semiconductors is the possibility of controlling their electronic behavior via intentional doping. Despite the unprecedented progress in the understanding of hybrid metal halide perovskites, extrinsic doping of perovskite remains nearly unexplored and perovskite–perovskite homojunctions have not been reported. Here we present a perovskite–perovskite homojunction obtained by vacuum deposition of stoichiometrically tuned methylammonium lead iodide (MAPI) films. Doping is realized by adjusting the relative deposition rates of MAI and PbI2, obtaining p-type (MAI excess) and n-type (MAI defect) MAPI. The successful stoichiometry change in the thin films is confirmed by infrared spectroscopy, which allows us to determine the MA content in the films. We analyzed the resulting thin-film junction by cross-sectional scanning Kelvin probe microscopy (SKPM) and found a contact potential difference (CPD) of 250 mV between the two differently doped perovskite layers. Planar diodes built with the perovskite–perovskite homojunction show the feasibility of our approach for implementation in devices.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.8b00964