2D and 3D MHD simulations of disk accretion by rotating magnetized stars: Search for variability

We performed 2D and full 3D magnetohydrodynamic simulations of disk accretion to a rotating star with an aligned or misaligned dipole magnetic field. We investigated the rotational equilibrium state and derived from simulations the ratio between two main frequencies: the spin frequency of the star a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in space research 2006, Vol.38 (12), p.2887-2892
Hauptverfasser: Romanova, Marina M., Kulkarni, Akshay, Long, Min, Lovelace, Richard V.E., Wick, Justin V., Ustyugova, Galina V., Koldoba, Alexander V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We performed 2D and full 3D magnetohydrodynamic simulations of disk accretion to a rotating star with an aligned or misaligned dipole magnetic field. We investigated the rotational equilibrium state and derived from simulations the ratio between two main frequencies: the spin frequency of the star and the orbital frequency at the inner radius of the disk. In 3D simulations we observed different features related to the non-axisymmetry of the magnetospheric flow. These features may be responsible for high-frequency quasi-periodic oscillations (QPOs). Variability at much lower frequencies may be connected with restructuring of the magnetic flux threading the inner regions of the disk. Such variability is specifically strong at the propeller stage of evolution.
ISSN:0273-1177
1879-1948
DOI:10.1016/j.asr.2006.04.019