Dental Pulp Stem Cells - Exploration in a Novel Animal Model: the Tasmanian Devil (Sarcophilus harrisii)

Dental pulp stem cells (DPSC) are a heterogeneous population of highly proliferative stem cells located in the soft inner pulp tissue of the tooth. Demonstrated to have an affinity for neural differentiation, DPSC have been reported to generate functional Schwann cells (SC) through in vitro differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cell reviews 2018-08, Vol.14 (4), p.500-509
Hauptverfasser: Graham, Chelsea M., Kremer, Karlea L., Koblar, Simon A., Hamilton-Bruce, Monica A., Pyecroft, Stephen B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dental pulp stem cells (DPSC) are a heterogeneous population of highly proliferative stem cells located in the soft inner pulp tissue of the tooth. Demonstrated to have an affinity for neural differentiation, DPSC have been reported to generate functional Schwann cells (SC) through in vitro differentiation. Both DPSC and SC have neural crest origins, recently a significant population of DPSC have been reported to derive from peripheral nerve-associated glia. The predisposition DPSC have towards the SC lineage is not only a very useful tool for neural regenerative therapies in the medical field, it also holds great promise in the veterinary field. Devil Facial Tumour (DFT) is a clonally transmissible cancer of SC origin responsible for devastating wild populations of the Tasmanian devil. Very few studies have investigated the healthy Tasmanian devil SC (tdSC) for comparative studies between tdSC and DFT cells, and the development and isolation of a tdSC population is yet to be undertaken. A Tasmanian devil DPSC model offers a promising new outlook for DFT research, and the link between SC and DPSC may provide a potential explanation as to how a cancerous SC initially arose in a single Tasmanian devil to then go on to infect others as a parasitic clonal cell line. In this review we explore the current role of DPSC in human regenerative medicine, provide an overview of the Tasmanian devil and the devastating effect of DFT, and highlight the promising potential DPSC techniques pose for DFT research and our current understanding of DFT.
ISSN:1550-8943
2629-3269
1558-6804
2629-3277
DOI:10.1007/s12015-018-9814-0