Influence of main emulsion components on the physicochemical and functional properties of W/O/W nano-emulsion: Effect of polyphenols, Hi-Cap, basil seed gum, soy and whey protein isolates
In this study, the effect of natural macromolecules as carrier agents on the biological activity of nano-encapsulated Bene hull polyphenols (Pistacia atlantica subsp. Mutica) through W/O/W emulsions was evaluated. The W/O microemulsions as primary emulsions and a complex of soy protein isolate and b...
Gespeichert in:
Veröffentlicht in: | Food research international 2018-06, Vol.108, p.136-143 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, the effect of natural macromolecules as carrier agents on the biological activity of nano-encapsulated Bene hull polyphenols (Pistacia atlantica subsp. Mutica) through W/O/W emulsions was evaluated. The W/O microemulsions as primary emulsions and a complex of soy protein isolate and basil seed gum (SPI-BSG), whey protein isolate and basil seed gum (WPI-BSG) and also Hi-Cap 100 in the outer aqueous phase were used to produce W/O/W nano-emulsions. Z-average size of emulsions stabilized by Hi-Cap, WPI-BSG, and SPI-BSG was 318, 736.9 and 1918 nm, respectively. The encapsulation efficiency of polyphenols for powders produced by Hi-Cap, WPI-BSG, and SPI-BSG was 95.25, 90.9 and 92.88%, respectively, which was decreased to 72.47, 67.12 and 64.44% after 6 weeks storage at 30 °C. The antioxidant activity of encapsulated polyphenols at 100, 200 and 300 ppm was measured in oil by peroxide and p-anisidine values during storage and was compared to non-encapsulated extract and synthetic antioxidant. Results showed oxidative alterations in oils containing encapsulated polyphenols was lower than unencapsulated form, which among them capsules produced by SPI-BSG exhibited higher antioxidant effects due to the better gradual release. Generally, the higher antioxidant potential was achieved with increased solubility and controlled release of polyphenols through their nano-encapsulation.
[Display omitted]
•Polyphenols were encapsulated in W/O/W nanoemulsions stabilized by biopolymers.•Nanoemulsions were produced by high pressure homogenization.•Encapsulated polyphenols by Hi-Cap had the highest encapsulation efficiency.•Encapsulated phenols controlled oil oxidation better than unencapsulated form. |
---|---|
ISSN: | 0963-9969 1873-7145 |
DOI: | 10.1016/j.foodres.2018.03.043 |