Steep-Slope WSe2 Negative Capacitance Field-Effect Transistor
P-type two-dimensional steep-slope negative capacitance field-effect transistors are demonstrated for the first time with WSe2 as channel material and ferroelectric hafnium zirconium oxide in gate dielectric stack. F4-TCNQ is used as p-type dopant to suppress electron leakage current and to reduce S...
Gespeichert in:
Veröffentlicht in: | Nano letters 2018-06, Vol.18 (6), p.3682-3687 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | P-type two-dimensional steep-slope negative capacitance field-effect transistors are demonstrated for the first time with WSe2 as channel material and ferroelectric hafnium zirconium oxide in gate dielectric stack. F4-TCNQ is used as p-type dopant to suppress electron leakage current and to reduce Schottky barrier width for holes. WSe2 negative capacitance field-effect transistors with and without internal metal gate structures and the internal field-effect transistors are compared and studied. Significant SS reduction is observed in WSe2 negative capacitance field-effect transistors by inserting the ferroelectric hafnium zirconium oxide layer, suggesting the existence of internal amplification (∼10) due to the negative capacitance effect. Subthreshold slope less than 60 mV/dec (as low as 14.4 mV/dec) at room temperature is obtained for both forward and reverse gate voltage sweeps. Negative differential resistance is observed at room temperature on WSe2 negative capacitance field-effect-transistors as the result of negative capacitance induced negative drain-induced-barrier-lowering effect. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.8b00816 |