Patternizing of impoundment impact (1985-2002) on fish assemblages in a lowland river using the Kohonen algorithm

Summary Impoundment impact on fish assemblage structure was investigated in the dammed middle course of the Warta River. A backwater site (AB) was located 2 km upstream of the Jeziorsko Reservoir, and a tailwater site (CD) 1.5 km downstream of the dam. Both sites were studied for 3 years in the pre‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied ichthyology 2005-06, Vol.21 (3), p.169-177
Hauptverfasser: Penczak, T., Kruk, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Impoundment impact on fish assemblage structure was investigated in the dammed middle course of the Warta River. A backwater site (AB) was located 2 km upstream of the Jeziorsko Reservoir, and a tailwater site (CD) 1.5 km downstream of the dam. Both sites were studied for 3 years in the pre‐impoundment period (1985–1987) and 15 years after damming (1988–2002). Quantitative electrofishing in spring and autumn assured obtaining yearly average biomass for each population. Most of the data analysis aimed to assess the dam impact on the fish assemblage structure but other accompanying impacts such as discharge manipulations, revetment, different forms of engineering, and water quality improvement in the tailwater and backwater reaches were also discussed. The Kohonen algorithm (self‐organizing map, SOM) was used for the analysis, and perfectly separated AB and CD samples into two clusters. Samples from the backwater (AB) proved that this reach of the Warta River had maintained its almost natural character and that fish assemblages had changed moderately, now occupying only five neighbouring hexagons out of a total of 16. In the tailwater (CD), however, because of considerable fluctuations in fish assemblages the SOM produced three subclusters, which engaged nine hexagons: (i) the pre‐impoundment period (1985–1987, two hexagons); (ii) 7 years after the definite closure of dam sluices (1988–1994, five hexagons); and (iii) the past 8 years of sampling (1995–2002, two hexagons), when stabilization in the assemblage was observed. The SOM also definitely proved profound changes in fish assemblage composition: most lithophilous species declined and many phytolithophilous and phytophilous species became dominants, particularly in the tailwater site where downstream migration of 0+ of successfully spawned species from the reservoir took place.
ISSN:0175-8659
1439-0426
DOI:10.1111/j.1439-0426.2005.00649.x