Study of biological activity and targeted distribution of catesbeianalectin in mouse tissue
Lectin has attracted attention because of its ability to serve as a carrier for targeted drug delivery. Large lectins isolated from marine invertebrates and crustaceans have strong immunogenicity and adverse effects, which limit their usefulness. This study reports the identification of catesbeianal...
Gespeichert in:
Veröffentlicht in: | Pakistan journal of pharmaceutical sciences 2018-05, Vol.31 (3(Supplementary)), p.1013-1020 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lectin has attracted attention because of its ability to serve as a carrier for targeted drug delivery. Large lectins isolated from marine invertebrates and crustaceans have strong immunogenicity and adverse effects, which limit their usefulness. This study reports the identification of catesbeianalectin via screening a bullfrog skin cDNA library. The catesbeianalectin polypeptide has a molecular weight of 1.47 kD, making it the smallest known lectin in terms of molecular weight. Circular dichroism analysis showed a PPII helix secondary structure. Catesbeianalectin strongly induces agglutination of rabbit erythrocytes and a variety of pathogens include Staphylococcus aureus, Streptococcus suis type 2, Actinobacillus pleuropneumoniae, and piglet paratyphoid Salmonella. The mean serum titer in catesbeianalectin-immunized Balb/c mice was 1:25, which was significantly lower than that of positive controls immunized with wheat germ agglutinin. Surface plasmon resonance indicated an S-type lectin. 125I-labeled catesbeianalectin did not pass the blood-brain barrier. This study provides a basis for further research on the potential of catesbeianalectin as a carrier in targeted drug delivery. |
---|---|
ISSN: | 1011-601X |