Apoptosis induced by cAMP requires Smac/DIABLO transcriptional upregulation

Smac/DIABLO is a mitochondrial protein that participates in apoptotic cell death by means of sequestering several members of the inhibitor of apoptosis protein family. This action allows caspase activation, cleavage of key cellular substrates and death. Release from mitochondria is considered the ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular signalling 2007-06, Vol.19 (6), p.1212-1220
Hauptverfasser: Martinez-Velazquez, Moises, Melendez-Zajgla, Jorge, Maldonado, Vilma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Smac/DIABLO is a mitochondrial protein that participates in apoptotic cell death by means of sequestering several members of the inhibitor of apoptosis protein family. This action allows caspase activation, cleavage of key cellular substrates and death. Release from mitochondria is considered the main regulatory step of Smac/DIABLO activity. Nevertheless, the fact that at least one isoform, Smac-beta, does not reside in this organelle implies that transcriptional regulation could also be important. cAMP is a well known second messenger with important apoptotic effects. To analyze if cAMP could be involved in Smac/DIABLO gene regulation, we analyzed 2903 base pairs upstream of the coding sequence and characterized the minimal promoter, which contains a consensus CRE site. We found that cAMP/PKA/CREB pathway is indeed an important regulator of Smac/DIABLO transcription, since exposure to the cAMP analog 8-CPT-cAMP, the adenylyl cyclase activator forskolin, the inhibitor of phosphodiesterase isobutylmethylxanthine or by hindering PKA activation with H89, regulated the promoter activity, as shown by gene reporter and RT-PCR assays. Additionally, the results of site-directed mutagenesis revealed that the consensus CRE site was biologically functional and required for cAMP-induced promoter activity in human HeLa cells. Supporting these results, a negative dominant version of the protein kinase A responsive factor, KCREB, reduced basal Smac/DIABLO expression and rendered the promoter unresponsive to cAMP. Reducing Smac expression using an antisense approach blocked the apoptosis effects of cAMP in cervical cancer cells. These results show that cAMP is an important modulator of the apoptotic threshold in cancer cell by means of regulating Smac/DIABLO expression.
ISSN:0898-6568
1873-3913
DOI:10.1016/j.cellsig.2007.01.001