Giant Piezomagnetism in Mn3NiN
Controlling magnetism with electric field directly or through strain-driven piezoelectric coupling remains a key goal of spintronics. Here, we demonstrate that giant piezomagnetism, a linear magneto-mechanic coupling effect, is manifest in antiperovskite Mn3NiN, facilitated by its geometrically frus...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2018-06, Vol.10 (22), p.18863-18868 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Controlling magnetism with electric field directly or through strain-driven piezoelectric coupling remains a key goal of spintronics. Here, we demonstrate that giant piezomagnetism, a linear magneto-mechanic coupling effect, is manifest in antiperovskite Mn3NiN, facilitated by its geometrically frustrated antiferromagnetism opening the possibility of new memory device concepts. Films of Mn3NiN with intrinsic biaxial strains of ±0.25% result in Néel transition shifts up to 60 K and magnetization changes consistent with theory. Films grown on BaTiO3 display a striking magnetization jump in response to uniaxial strain from the intrinsic BaTiO3 structural transition, with an inferred 44% strain coupling efficiency and a magnetoelectric coefficient α (where α = dB/dE) of 0.018 G cm/V. The latter agrees with the 1000-fold increase over Cr2O3 predicted by theory. Overall, our observations pave the way for further research into the broader family of Mn-based antiperovskites where yet larger piezomagnetic effects are predicted to occur at room temperature. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.8b03112 |