Effects of diethylene glycol dibenzoate and Bisphenol A on the lipid metabolism of Danio rerio

Endocrine disrupting chemicals (EDCs) are known to disrupt normal metabolism and can influence the incidence of obesity in animals and humans. EDCs can exert adverse effects at low concentrations, often in a non-monotonic dose-related fashion. Among EDCs, Bisphenol A (BPA) is extensively used in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2018-09, Vol.636, p.641-655
Hauptverfasser: Santangeli, Stefania, Notarstefano, Valentina, Maradonna, Francesca, Giorgini, Elisabetta, Gioacchini, Giorgia, Forner-Piquer, Isabel, Habibi, Hamid R., Carnevali, Oliana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Endocrine disrupting chemicals (EDCs) are known to disrupt normal metabolism and can influence the incidence of obesity in animals and humans. EDCs can exert adverse effects at low concentrations, often in a non-monotonic dose-related fashion. Among EDCs, Bisphenol A (BPA) is extensively used in the production of polycarbonate plastic, and is among the most abundant contaminants in the world. Diethylene glycol dibenzoate (DGB), an approved alternative to phthalates in the production of plastic and latex products, however, is less abundant and its effects are almost completely unknown. The aim of this study is to provide information on the hepatic effects of BPA and DGB on lipid metabolism, and investigate possible links between these contaminants and the increased incidence of obesity. In the present study, we exposed zebrafish to three different BPA doses (5; 10; 20 μg/L) and five different doses of DGB (0.01; 0.1; 1; 10; 100 μg/L) for a period of 21 days, and investigated transcript levels for genes involved in lipid metabolism as well as measuring liver content of phosphates, lipids and proteins. The results demonstrate disruptive effects of BPA and DGB on lipid metabolism in a non-monotonic dose-related fashion. The lowest dose of BPA increased the storage of triglycerides and promoted fatty acid synthesis, while the highest concentration promoted de novo lipogenesis and cholesterologenesis. Exposure to DGB was also found to affect lipid metabolism leading to increased lipid production and mobilization in a non-monotonic dose-related fashion. Analysis of BPA and DGB by FT-IR revealed that exposure to both compounds lead to changes in the biochemical composition of liver. The findings provide a support for the hypothesis that BPA and DGB may be among the environmental contaminants with obesogenic property. [Display omitted] •Impairment of lipid metabolism by BPA and DGB in zebrafish•Induction of metabolic disorder by environmental pollutants•Spectroscopic and molecular approach to study the effects of plasticizers on lipid disorders.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2018.04.291