Effects of Stimulus Spectral Contrast on Receptive Fields of Dorsal Cochlear Nucleus Neurons
Center for Hearing and Balance, Johns Hopkins University, Baltimore, Maryland Submitted 27 November 2006; accepted in final form 30 July 2007 Neurons in the dorsal cochlear nucleus (DCN) exhibit strong nonlinearities in spectral processing. Low-order models that transform the stimulus spectrum into...
Gespeichert in:
Veröffentlicht in: | Journal of neurophysiology 2007-10, Vol.98 (4), p.2133-2143 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Center for Hearing and Balance, Johns Hopkins University, Baltimore, Maryland
Submitted 27 November 2006;
accepted in final form 30 July 2007
Neurons in the dorsal cochlear nucleus (DCN) exhibit strong nonlinearities in spectral processing. Low-order models that transform the stimulus spectrum into discharge rate using a combination of first- and second-order weighting of the spectrum (quadratic models) usually fail to predict responses to novel stimuli for principal neurons in the DCN, even though they work well in ventral cochlear nucleus. Here we investigate the effects of spectral contrast on the performance of such models. Typically, the models fail for stimuli with natural-sound–like spectral contrasts ( 12 dB), but have good prediction performance at small (3-dB) contrasts. The weights also typically increase substantially in amplitude at smaller spectral contrast. These changes in weight size with contrast are partly inherited from similar effects seen in auditory nerve fibers, but there must be additional effects from inhibitory circuits in the DCN. These results provide insight into the reasons for the poor performance of spectrotemporal receptive field (STRF) models in predicting responses of auditory neurons. Because the general shapes of the weights do not change between low and high contrast, they also suggest that STRFs may capture meaningful properties of neural receptive fields, even though they do not do well at predicting responses.
Address for reprint requests and other correspondence: E. D. Young, Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205 (E-mail: eyoung{at}jhu.edu ) |
---|---|
ISSN: | 0022-3077 1522-1598 |
DOI: | 10.1152/jn.01239.2006 |