Hydrogen Peroxide–Releasing Hydrogels for Enhanced Endothelial Cell Activities and Neovascularization
Reactive oxygen species (ROS) have been implicated as a critical modulator for various therapeutic applications such as treatment of vascular disorders, wound healing, and cancer treatment. Specifically, growing evidence has recently demonstrated that transient or low levels of hydrogen peroxide (H2...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2018-05, Vol.10 (21), p.18372-18379 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reactive oxygen species (ROS) have been implicated as a critical modulator for various therapeutic applications such as treatment of vascular disorders, wound healing, and cancer treatment. Specifically, growing evidence has recently demonstrated that transient or low levels of hydrogen peroxide (H2O2) facilitates tissue regeneration and wound repair through acute oxidative stress that can evaluate intracellular ROS levels in cells or tissues. Herein, we report a gelatin-based H2O2-releasing hydrogel formed by dual enzyme-mediated reaction using horseradish peroxidase and glucose oxidase (GO x ). The release behavior of H2O2 from the hydrogel matrices can be precisely controlled by varying the GO x concentrations. We demonstrate that H2O2-releasing hydrogels with the optimal condition increase transient upregulation of intracellular ROS levels in the endothelial cells (ECs), enhance proliferative activities of ECs in vitro, and facilitate neovascularization in ovo. We suggest that our H2O2-releasing hydrogels hold great potential as an injectable and dynamic matrix for the treatment of vascular disorders as well as in tissue regenerative medicine. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.8b04522 |