Tissue-selective alteration of ethanolamine plasmalogen metabolism in dedifferentiated colon mucosa
Human colon lipid analysis by imaging mass spectrometry (IMS) demonstrates that the lipid fingerprint is highly sensitive to a cell's pathophysiological state. Along the colon crypt axis, and concomitant to the differentiation process, certain lipid species tightly linked to signaling (phosphat...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta. Molecular and cell biology of lipids 2018-08, Vol.1863 (8), p.928-938 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human colon lipid analysis by imaging mass spectrometry (IMS) demonstrates that the lipid fingerprint is highly sensitive to a cell's pathophysiological state. Along the colon crypt axis, and concomitant to the differentiation process, certain lipid species tightly linked to signaling (phosphatidylinositols and arachidonic acid (AA)-containing diacylglycerophospholipids), change following a rather simple mathematical expression. We extend here our observations to ethanolamine plasmalogens (PlsEtn), a unique type of glycerophospholipid presenting a vinyl ether linkage at sn-1 position. PlsEtn distribution was studied in healthy, adenomatous, and carcinomatous colon mucosa sections by IMS. In epithelium, 75% of PlsEtn changed in a highly regular manner along the crypt axis, in clear contrast with diacyl species (67% of which remained constant). Consistently, AA-containing PlsEtn species were more abundant at the base, where stem cells reside, and decreased while ascending the crypt. In turn, mono−/diunsaturated species experienced the opposite change. These gradients were accompanied by a gradual expression of ether lipid synthesis enzymes. In lamina propria, 90% of stromal PlsEtn remained unchanged despite the high content of AA and the gradient in AA-containing diacylglycerophospholipids. Finally, both lipid and protein gradients were severely affected in polyps and carcinoma. These results link PlsEtn species regulation to cell differentiation for the first time and confirm that diacyl and ether species are differently regulated. Furthermore, they reaffirm the observations on cell lipid fingerprint image sensitivity to predict cell pathophysiological status, reinforcing the translational impact both lipidome and IMS might have in clinical research.
[Display omitted]
•Lipidome accurately conveys the state of the cell.•Plasmalogen species are strictly regulated during colonocyte differentiation.•The gradient in epithelial plasmalogens along the crypt can be mathematically described.•Early dedifferentiation induces changes in epithelial but not in stromal plasmalogens. |
---|---|
ISSN: | 1388-1981 1879-2618 |
DOI: | 10.1016/j.bbalip.2018.04.017 |