How and to what extent does precipitation on multi-temporal scales and soil moisture at different depths determine carbon flux responses in a water-limited grassland ecosystem?

In water-limited ecosystems, hydrological processes significantly affect the carbon flux. The semi-arid grassland ecosystem is particularly sensitive to variations in precipitation (PRE) and soil moisture content (SMC), but to what extent is not fully understood. In this study, we estimated and anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2018-09, Vol.635, p.1255-1266
Hauptverfasser: Fang, Qingqing, Wang, Guoqiang, Xue, Baolin, Liu, Tingxi, Kiem, Anthony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In water-limited ecosystems, hydrological processes significantly affect the carbon flux. The semi-arid grassland ecosystem is particularly sensitive to variations in precipitation (PRE) and soil moisture content (SMC), but to what extent is not fully understood. In this study, we estimated and analyzed how hydrological variables, especially PRE at multi-temporal scales (diurnal, monthly, phenological-related, and seasonal) and SMC at different soil depths (0–20 cm, 20–40 cm, 40–60 cm, 60–80 cm) affect the carbon flux. For these aims, eddy covariance data were combined with a Vegetation Photosynthesis and Respiration Model (VPRM) to simulate the regional gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem exchange of CO2 (NEE). Interestingly, carbon flux showed no relationship with diurnal PRE or phenological-related PRE (precipitation in the growing season and non-growing season). However, carbon flux was significantly related to monthly PRE and to seasonal PRE (spring + summer, autumn). The GPP, Reco, and NEE increased in spring and summer but decreased in autumn with increasing precipitation due to the combined effect of salinization in autumn. The GPP, Reco, and NEE were more responsive to SMC at 0–20 cm depth than at deeper depths due to the shorter roots of herbaceous vegetation. The NEE increased with increasing monthly PRE because soil microbes responded more quickly than plants. The NEE significantly decreased with increasing SMC in shallow surface due to a hysteresis effect on water transport. The results of our study highlight the complex processes that determine how and to what extent PRE at multi-temporal scale and SMC at different depths affect the carbon flux response in a water-limited grassland. [Display omitted] •Carbon flux variations in grassland were estimated.•Carbon flux was higher in spring/summer and decreased in autumn as precipitation increased.•Decreased carbon flux as precipitation increased in autumn was due to salinization.•Carbon flux was most responsive to soil moisture at 0–20 cm due to short roots.•Net ecosystem CO2 exchange decreased with increased soil moisture.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2018.04.225