Edge modes of scattering chains with aperiodic order

We study the scattering resonances of one-dimensional deterministic aperiodic chains of electric dipoles using the vectorial Green's matrix method, which accounts for both short- and long-range electromagnetic interactions in open scattering systems. We discover the existence of edge-localized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2018-05, Vol.43 (9), p.1986-1989
Hauptverfasser: Wang, Ren, Röntgen, Malte, Morfonios, Christian V, Pinheiro, Felipe A, Schmelcher, Peter, Dal Negro, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the scattering resonances of one-dimensional deterministic aperiodic chains of electric dipoles using the vectorial Green's matrix method, which accounts for both short- and long-range electromagnetic interactions in open scattering systems. We discover the existence of edge-localized scattering states within fractal energy gaps with characteristic topological band structures. Notably, we report and characterize edge-localized modes in the classical wave analogues of the Su-Schrieffer-Heeger (SSH) dimer model, quasiperiodic Harper and Fibonacci crystals, as well as in more complex Thue-Morse aperiodic systems. Our study demonstrates that topological edge-modes with characteristic power-law envelope appear in open aperiodic systems and coexist with traditional exponentially localized ones. Our results extend the concept of topological states to the scattering resonances of complex open systems with aperiodic order, thus providing an important step towards the predictive design of topological optical metamaterials and devices beyond tight-binding models.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.43.001986