Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways

While immunosuppressive environments mediated by myeloid-derived suppressor cells (MDSCs) have been well documented in glioma patients, the mechanisms of MDSC development and activation have not been clearly defined. Here, we elucidated a role for glioma-derived exosomes (GDEs) in potentiating an MD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2018-08, Vol.37 (31), p.4239-4259
Hauptverfasser: Guo, Xiaofan, Qiu, Wei, Liu, Qinglin, Qian, Mingyu, Wang, Shaobo, Zhang, Zongpu, Gao, Xiao, Chen, Zihang, Xue, Hao, Li, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While immunosuppressive environments mediated by myeloid-derived suppressor cells (MDSCs) have been well documented in glioma patients, the mechanisms of MDSC development and activation have not been clearly defined. Here, we elucidated a role for glioma-derived exosomes (GDEs) in potentiating an MDSC pathway. We isolated normoxia-stimulated and hypoxia-stimulated GDEs and studied their MDSC induction abilities in vivo and in vitro. Analyses of spleen and bone marrow MDSC proportions (flow cytometry) and reactive oxygen species (ROS), arginase activity, nitric oxide (NO), T-cell proliferation and immunosuppressive cytokine (IL-10 and TGF-β, ELISA) levels were used to assess MDSC expansion and functional capacity. We also performed microRNA (miRNA) sequencing analysis of two types of GDEs to find miRNAs that potentially mediate the development and activation of MDSCs. GDE miRNA intracellular signaling in MDSCs was also studied. Hypoxia promoted the secretion of GDEs, and mouse MDSCs could uptake GDEs. Hypoxia-stimulated GDEs had a stronger ability to induce MDSCs than N-GDEs. The hypoxia-inducible expression of miR-10a and miR-21 in GDEs mediated GDE-induced MDSC expansion and activation by targeting RAR-related orphan receptor alpha (RORA) and phosphatase and tensin homolog (PTEN). Mice inoculated with miR-10a or miR-21 knockout glioma cells generated fewer MDSCs than those inoculated with normal glioma cells. These data elucidated a mechanism by which glioma cells influence the differentiation and activation of MDSCs via exosomes and demonstrated how local glioma hypoxia affects the entirety of tumor immune environments.
ISSN:0950-9232
1476-5594
DOI:10.1038/s41388-018-0261-9