Optimum repetition rates for dual-comb spectroscopy
The determination of the properties (i.e. line center, width, and amplitude) of a spectral line is simulated using a Monte Carlo method. For dual-comb spectroscopy, ideal repetition rates emerge for both the signal and LO combs that do not correspond to the repetition rates that possess the highest...
Gespeichert in:
Veröffentlicht in: | Optics express 2018-04, Vol.26 (9), p.12049-12056 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The determination of the properties (i.e. line center, width, and amplitude) of a spectral line is simulated using a Monte Carlo method. For dual-comb spectroscopy, ideal repetition rates emerge for both the signal and LO combs that do not correspond to the repetition rates that possess the highest signal-to-noise ratio. The determination is even more accurate when the repetition rates have an arbitrary near-harmonic ratio. The simulation results are generalized to allow for the comparison of any two spectroscopic systems (i.e. not just comb-based systems) by performing the simulations as a function of the spectral point spacing and signal-to-noise ratio of the acquired data. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.26.012049 |