Relationship between brain and ovary aromatase activity and isoform-specific aromatase mRNA expression in the fathead minnow ( Pimephales promelas)

There is growing evidence that some chemicals present in the environment have the capacity to inhibit, or potentially induce, aromatase activity. This study compared aromatase activities and isoform-specific mRNA expression in brain and ovary tissue from non-exposed fathead minnows representing thre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aquatic toxicology 2006-03, Vol.76 (3), p.353-368
Hauptverfasser: Villeneuve, Daniel L., Knoebl, Iris, Kahl, Michael D., Jensen, Kathleen M., Hammermeister, Dean E., Greene, Katie J., Blake, Lindsey S., Ankley, Gerald T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is growing evidence that some chemicals present in the environment have the capacity to inhibit, or potentially induce, aromatase activity. This study compared aromatase activities and isoform-specific mRNA expression in brain and ovary tissue from non-exposed fathead minnows representing three different ages and stages of reproductive activity, and from fathead minnows exposed to the aromatase inhibitor fadrozole for 7 d. The goal was to determine whether measures of a single aromatase endpoint in either brain or ovary tissue would be sufficient to understand and predict system-wide effects of endocrine disrupting chemicals on aromatase activity and transcript levels. Aromatase activity in the ovary, but not brain, varied significantly with age/reproductive category, with adults held in non-reproductive conditions showing significantly lower activity than juveniles and reproductively-active adults. Significant correlations between isoform-specific transcript levels and aromatase activity were observed for ovary tissue, but those relationships were not robust for all age/reproductive categories, nor were they sustained in fadrozole-treated fish. In vitro, fadrozole inhibited the aromatase activity of brain and ovary post-mitochondrial supernatants with similar potency (IC50s = 8.82 ± 1.58 and 6.93 ± 0.80 μM for brain and ovary, respectively), despite large differences in the magnitude of activity. In vivo, fadrozole altered aromatase activity and isoform-specific transcript levels in both brain and ovary tissue, but concentration-response relationships were different for each tissue. Aromatase activity and P450aromB mRNA expression in brain showed a dose-dependent decrease at concentrations greater than 5.55 μg/L. In contrast, ovary activity showed an inverted U-shaped concentration-response consistent with the interplay between increased P450aromA transcript levels in ovary and competitive inhibition of the aromatase enzyme. As a whole, results of this study did not reveal any robust correlations between brain and ovary aromatase activity and/or isoform-specific mRNA expression. However, they were consistent with the current body of evidence related to teleost aromatase regulation, suggesting that increased understanding of the biology of aromatase may facilitate system-wide understanding of effects on aromatase based on relatively few measured endpoints.
ISSN:0166-445X
1879-1514
DOI:10.1016/j.aquatox.2005.10.016