Method Using Water-Based Solvent to Prepare Li7La3Zr2O12 Solid Electrolytes

Li-garnet Li7La3Zr2O12 (LLZO) is a promising candidate of solid electrolytes for high-safety solid-state Li+ ion batteries. However, because of its high reactivity to water, the preparation of LLZO powders and ceramics is not easy for large-scale amounts. Herein, a method applying water-based solven...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-05, Vol.10 (20), p.17147-17155
Hauptverfasser: Huang, Xiao, Lu, Yang, Jin, Jun, Gu, Sui, Xiu, Tongping, Song, Zhen, Badding, Michael E, Wen, Zhaoyin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Li-garnet Li7La3Zr2O12 (LLZO) is a promising candidate of solid electrolytes for high-safety solid-state Li+ ion batteries. However, because of its high reactivity to water, the preparation of LLZO powders and ceramics is not easy for large-scale amounts. Herein, a method applying water-based solvent is proposed to demonstrate a possible solution. Ta-doped LLZO, that is, Li6.4La3Zr1.4Ta0.6O12 (LLZTO), and its LLZTO/MgO composite ceramics are made by attrition milling, followed by a spray-drying process using water-based slurries. The impacts of parameters of the method on the structure and properties of green and sintered pellets are studied. A relative density of ∼95%, a Li-ion conductivity of ∼3.5 × 10–4 S/cm, and uniform grain size LLZTO/MgO garnet composite ceramics are obtained with an attrition-milled LLZTO/MgO slurry that contains 40 wt % solids and 2 wt % polyvinyl alcohol binder. Li–sulfur batteries based on these ceramics are fabricated and work under 25 °C for 20 cycles with a Coulombic efficiency of 100%. This research demonstrates a promising mass production method for the preparation of Li-garnet ceramics.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.8b01961