Downregulation of miR-34a promotes endothelial cell growth and suppresses apoptosis in atherosclerosis by regulating Bcl-2
Several miRNAs have been demonstrated to be involved in endothelial dysfunction during atherosclerosis (AS). However, the detailed roles and underlying mechanisms of miR-34a in AS-associated endothelial cell apoptosis are far from being addressed. Apolipoprotein E-deficient (ApoE −/− ) mice fed with...
Gespeichert in:
Veröffentlicht in: | Heart and vessels 2018-10, Vol.33 (10), p.1185-1194 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Several miRNAs have been demonstrated to be involved in endothelial dysfunction during atherosclerosis (AS). However, the detailed roles and underlying mechanisms of miR-34a in AS-associated endothelial cell apoptosis are far from being addressed. Apolipoprotein E-deficient (ApoE
−/−
) mice fed with high-fat diet (HFD) were used as in vivo model of AS. Oxidized low-density lipoprotein (ox-LDL)-treated human aortic endothelial cells (HAECs) were applied as in vitro model of AS. The effects of miR-34a on atherosclerotic lesions were evaluated by hematoxylin–eosin (HE) and Oil Red O staining. Pecam-1
+
endothelial cells were isolated from the aortic arch with flow cytometry. qRT-PCR and western blot were employed to measure gene and protein expression. The effects of miR-34a on cell viability, cell cycle distribution, and apoptosis were assessed by Cell counting kit (CCK)-8 and flow cytometry analysis. The relationship between miR-34a and Bcl-2 was confirmed by online softwares, luciferase reporter assay, and RNA immunoprecipitation (RIP). miR-34a was upregulated in HFD-induced ApoE
−/−
mice and ox-LDL-treated HAECs. Anti-miR-34a decreased atherosclerotic lesions and inhibited Pecam-1
+
endothelial cells apoptosis in HFD-induced ApoE
−/−
mice. Moreover, anti-miR-34a significantly promoted cell viability, alleviated cell cycle arrest, and restrained apoptosis in ox-LDL-treated HAECs. Furthermore, Bcl-2 was identified as a target of miR-34a, and miR-34a inhibited Bcl-2 expression via binding to its 3′UTR. Rescue experiments demonstrated that Bcl-2 overexpression dramatically reversed miR-34a-mediated inhibition of cell growth and promotion of apoptosis in ox-LDL-exposed HAECs. Depletion of miR-34a facilitated endothelial cell growth and blocked apoptosis in AS by upregulating Bcl-2, offering a promising avenue for AS therapy. |
---|---|
ISSN: | 0910-8327 1615-2573 |
DOI: | 10.1007/s00380-018-1169-6 |