Relationships between humic substance-bound mercury contents and soil properties in subtropical zone
The bioavailability of humic substance-bound mercury (HS-Hg) has been established, while the distribution of HS-Hg in soils in relation to soil properties remains obscure. Path analysis and principal component analysis were employed in present study to investigate how soil factors influence the cont...
Gespeichert in:
Veröffentlicht in: | Journal of environmental sciences (China) 2006-01, Vol.18 (5), p.951-957 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The bioavailability of humic substance-bound mercury (HS-Hg) has been established, while the distribution of HS-Hg in soils in relation to soil properties remains obscure. Path analysis and principal component analysis were employed in present study to investigate how soil factors influence the contents of HS-Hg in soils. Results showed that HS-Hg ranged from 0.0192 to 0.2051 mg/kg in soils. The two fractions existed in soils as humic acid-bound mercury (HA-Hg) 〉 fulvic acid-bound mercury (FA-Hg) and the ratio of HA-Hg/FA-Hg was 1.61 on the average. Soil organic carbon (OC) and HS favorably determined soil HS-Hg and the two fractions. The mercury source forming HS-Hg derived from soil total mercury and HS-Hg. FA-Hg and HA-Hg served as mercury source for each other. In acidic soils, FA-Hg and HA-Hg consistently rose with the increase of OC, and generally HA-Hg increased more dramatically. Soils with lower pH and lighter texture contained more HS-Hg, particularly fraction of FA-Hg. Among all influencing factors, organic material source showed the strongest effect, followed by other soil properties and soil mercury source. |
---|---|
ISSN: | 1001-0742 1878-7320 |
DOI: | 10.1016/S1001-0742(06)60020-X |