Quantum Metrology beyond the Classical Limit under the Effect of Dephasing

Quantum sensors have the potential to outperform their classical counterparts. For classical sensing, the uncertainty of the estimation of the target fields scales inversely with the square root of the measurement time T. On the other hand, by using quantum resources, we can reduce this scaling of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2018-04, Vol.120 (14), p.140501-140501, Article 140501
Hauptverfasser: Matsuzaki, Yuichiro, Benjamin, Simon, Nakayama, Shojun, Saito, Shiro, Munro, William J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum sensors have the potential to outperform their classical counterparts. For classical sensing, the uncertainty of the estimation of the target fields scales inversely with the square root of the measurement time T. On the other hand, by using quantum resources, we can reduce this scaling of the uncertainty with time to 1/T. However, as quantum states are susceptible to dephasing, it has not been clear whether we can achieve sensitivities with a scaling of 1/T for a measurement time longer than the coherence time. Here, we propose a scheme that estimates the amplitude of globally applied fields with the uncertainty of 1/T for an arbitrary time scale under the effect of dephasing. We use one-way quantum-computing-based teleportation between qubits to prevent any increase in the correlation between the quantum state and its local environment from building up and have shown that such a teleportation protocol can suppress the local dephasing while the information from the target fields keeps growing. Our method has the potential to realize a quantum sensor with a sensitivity far beyond that of any classical sensor.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.120.140501