Ecological drivers and reproductive consequences of non-kin cooperation by ant queens

The fitness consequences of joining a group are highly dependent on ecological context, especially for non-kin. To assess the relationships between cooperation and environment, we examined variation in colony reproductive success for a harvester ant species that nests either solitarily or with multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oecologia 2018-07, Vol.187 (3), p.643-655
Hauptverfasser: Haney, Brian R., Fewell, Jennifer H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fitness consequences of joining a group are highly dependent on ecological context, especially for non-kin. To assess the relationships between cooperation and environment, we examined variation in colony reproductive success for a harvester ant species that nests either solitarily or with multiple, unrelated queens, a social strategy known as primary polygyny. We measured the reproductive investment of colonies of solitary versus social nesting types at two sites, one with primarily single-queen colonies, and the other with a majority of polygynous nests. Our results were consistent with the hypothesis that cooperative nesting by unrelated ant queens is likely a selection response to difficult environments, rather than a strategy to maximize reproduction under favorable conditions. Fewer colonies at the primarily polygynous site reproduced than at the site with primarily single queen nests, and those that did had lower reproductive investment, as measured by number and total mass of reproductives. Assessment of ecological conditions also support the harsh environment hypothesis. Colony density in the multi-queen population was higher, and nearest neighbor distances were lower for non-reproducing than reproducing colonies. To more directly test the hypothesis that colony reproduction was ecologically constrained, we experimentally supplemented food resources for a subset of colonies at the primary polygyny site. Supplemented colonies increased reproductive investment levels to equal that of colonies at the single-queen population, further indicating that environmental pressures are severe where primary polygyny is dominant, and may drive the evolution of non-kin cooperation in this context.
ISSN:0029-8549
1432-1939
DOI:10.1007/s00442-018-4148-9