Immunological validation of the EpitOptimizer program for streamlined design of heteroclitic epitopes
Abstract One strategy to generate T-cell responses to tumors is to alter subdominant epitopes through substitution of amino acids that are optimal anchors for specific MHC molecules, termed heteroclitic epitopes. This approach is manually error-prone and time-consuming. In here, we describe a comput...
Gespeichert in:
Veröffentlicht in: | Vaccine 2007-07, Vol.25 (29), p.5330-5342 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract One strategy to generate T-cell responses to tumors is to alter subdominant epitopes through substitution of amino acids that are optimal anchors for specific MHC molecules, termed heteroclitic epitopes. This approach is manually error-prone and time-consuming. In here, we describe a computer-based algorithm (EpitOptimizer) for the streamlined design of heteroclitic epitopes. Analysis of two cancer-related proteins showed that EpitOptimizer-generated peptides have enhanced MHC-I binding compared with their wild-type counterparts; and were able to induce stronger CD8+ T-cell responses against their native epitope. These data demonstrate that this approach can serve as the basis of epitope-engineering against cancer and intracellular pathogens. |
---|---|
ISSN: | 0264-410X 1873-2518 |
DOI: | 10.1016/j.vaccine.2007.05.008 |