Noncoding RNAs in ischemic stroke: time to translate

Stroke is devastating and a major cause of morbidity and mortality around globe. Current interventions for ischemic stroke include thrombolytics, clot retrieval devices and/or intravenous tissue plasminogen activators (tPA), the latter two becoming the first line of treatment. Owing to the limitatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2018-06, Vol.1421 (1), p.19-36
Hauptverfasser: Kaur, Harpreet, Sarmah, Deepaneeta, Saraf, Jackson, Vats, Kanchan, Kalia, Kiran, Borah, Anupom, Yavagal, Dileep R., Dave, Kunjan R., Ghosh, Zhumur, Bhattacharya, Pallab
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stroke is devastating and a major cause of morbidity and mortality around globe. Current interventions for ischemic stroke include thrombolytics, clot retrieval devices and/or intravenous tissue plasminogen activators (tPA), the latter two becoming the first line of treatment. Owing to the limitations of tPA to elicit therapeutic benefits in a narrow time window, new pharmacological interventions are needed. Exploring noncoding RNAs (ncRNAs) may be a promising option for stroke treatment. ncRNAs are endogenous molecules that play key roles in the pathophysiology of many functions and diseases, including during ischemic stroke. Small ncRNAs such as microRNAs, Piwi‐interacting RNAs, and long ncRNAs affect the genetic machinery at molecular levels. These small ncRNAs, along with their target genes and RNA transcripts, are involved in repair and recovery mechanisms after stroke. The potential of ncRNAs to regulate physiological processes highlights their potential therapeutic importance. Here, we enumerate the details and roles of different types of ncRNAs as biomarkers and targets for future stroke intervention.
ISSN:0077-8923
1749-6632
DOI:10.1111/nyas.13612