Effect of p53 haploinsufficiency on melphalan-induced genotoxic effects in mouse bone marrow and peripheral blood
Mice heterozygous for a p53 null mutation develop tumours induced by genotoxic carcinogens with a shorter latency than wild type mice and have been proposed as an alternate animal model for carcinogenicity testing. Some literature data suggest that p53+/− mice might also be more sensitive to the sho...
Gespeichert in:
Veröffentlicht in: | Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis 2007-02, Vol.615 (1), p.57-65 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mice heterozygous for a p53 null mutation develop tumours induced by genotoxic carcinogens with a shorter latency than wild type mice and have been proposed as an alternate animal model for carcinogenicity testing. Some literature data suggest that p53+/− mice might also be more sensitive to the short-term effects of genotoxic agents and manifest a haploinsufficiency phenotype that could contribute to the higher tumour susceptibility. We have compared the induction of micronuclei in bone marrow and blood of p53+/− and p53+/+ isogenic mice after treatment with a single or multiple doses of melphalan (MLP), a crosslinking genotoxic carcinogen. We have also characterized the mechanism of micronucleus induction with CREST staining of kinetochore proteins to distinguish between chromosome break- and chromosome loss-induced micronuclei. Significant increases of micronucleated bone marrow polychromatic erythrocytes and blood reticulocytes were induced under all MLP exposure conditions. The frequency of micronucleated blood erythrocytes increased linearly with duration of exposure. Micronuclei were essentially a consequence of chromosome break events. After a single MLP dose, a significant reduction of the frequency of polychromatic erythrocytes in bone marrow of p53+/+ animals suggested the induction of cytotoxicity/cell cycle delay. This effect was not observed in p53+/− mice. We believe this finding to provide some evidence of a haploinsufficiency phenotype in the modulation of cell cycle/apoptotic pathways mediated by the p53 protein. In bone marrow of wild type mice, an increased effect of multiple MLP doses was detected over that of a single administration, whereas, in p53+/− mice, no differential effect was found of different exposure durations. Possibly, the probability of micronucleus formation increased under chronic exposure because of increased cell division in response to peripheral anemia and a reduction of p53 protein level had a small effect on cell cycle modulation and on such indirect mechanism of micronucleus induction. However, pairwise comparisons between the frequencies of cells with micronuclei in wild type and p53+/− mice under all exposure conditions did not show statistically significant differences, suggesting that the observed effects of p53 haploinsufficiency were weak and temporary and a higher/faster induction of irreversible chromosome damage could not account for the increased susceptibility of p53+/− mice to MLP-induced tumours. |
---|---|
ISSN: | 0027-5107 1386-1964 1873-135X 0027-5107 |
DOI: | 10.1016/j.mrfmmm.2006.10.001 |