Epigallocatechin-3-gallate attenuates microcystin-LR-induced apoptosis in human umbilical vein endothelial cells through activation of the NRF2/HO-1 pathway
Our previous study showed that the tea extract, epigallocatechin-3-gallate (EGCG), protects against microcystin-LR (MC-LR) -mediated apoptosis of human umbilical vein endothelial cells (HUVECs); however, the mechanism underlying MC-LR-induced HUVEC apoptosis remains incompletely understood. In this...
Gespeichert in:
Veröffentlicht in: | Environmental pollution (1987) 2018-08, Vol.239, p.466-472 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our previous study showed that the tea extract, epigallocatechin-3-gallate (EGCG), protects against microcystin-LR (MC-LR) -mediated apoptosis of human umbilical vein endothelial cells (HUVECs); however, the mechanism underlying MC-LR-induced HUVEC apoptosis remains incompletely understood. In this study, we investigated whether the nuclear factor erythroid-like 2 (NRF2)/heme oxygenase-1 (HO-1) pathway, which regulates antioxidant transcriptional regulation of oxidative stress and apoptosis, is involved in this process. Mitochondrial membrane potential (MMP) and caspase-3/-9 activities were evaluated in HUVECs by JC-1 staining and colorimetric activity assay, and a DCFH-DA fluorescent probe assay was used to quantitate reactive oxygen species (ROS) generation. The effects of MC-LR, EGCG, NF2, and HO-1 on HUVEC apoptosis were explored by western blotting and small interfering RNA (siRNA) analyses. MC-LR treatment downregulated HUVEC mitochondrial membrane potential, and decreased levels of cytochrome c release and activated caspase-3/-9, ROS generation, consequently inducing HUVEC apoptosis. EGCG treatment attenuated MC-LR-mediated HUVEC oxidative stress and mitochondria-related apoptosis. EGCG induced NRF2/HO-1 expression and activation in MC-LR treated HUVECs, while downregulation of NRF2/HO-1 by specific siRNAs revealed that NRF2/HO-1 signaling was involved in EGCG attenuation of MC-LR-induced HUVEC apoptosis. Our findings indicate that EGCG treatment protects against MC-LR-mediated HUVEC apoptosis via activation of NRF2/HO-1 signaling.
[Display omitted]
•The mechanism underlying MC-LR-induced HUVEC apoptosis was investigated.•EGCG attenuated MC-LR-mediated HUVEC oxidative stress and apoptosis.•EGCG protects against MC-LR-mediated HUVEC apoptosis via NRF2/HO-1 signaling.
EGCG can ameliorate MC-LR-induced apoptosis of HUVECs through inhibition of ROS-mediated mitochondrial injury and activation of NRF2/HO-1 signaling. |
---|---|
ISSN: | 0269-7491 1873-6424 |
DOI: | 10.1016/j.envpol.2018.04.038 |