3-D quantification and visualization of vascular structures from confocal microscopic images using skeletonization and voxel-coding
This paper presents an image processing approach for information extraction from three-dimensional (3-D) images of vasculature. It extracts quantitative information such as skeleton, length, diameter, and vessel-to-tissue ratio for different vessels as well as their branches. Furthermore, it generat...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2005-11, Vol.35 (9), p.791-813 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents an image processing approach for information extraction from three-dimensional (3-D) images of vasculature. It extracts quantitative information such as skeleton, length, diameter, and vessel-to-tissue ratio for different vessels as well as their branches. Furthermore, it generates 3-D visualization of vessels based on desired anatomical characteristics such as vessel diameter or 3-D connectivity. Steps of the proposed approach are: (1) pre-processing, (2) distance mappings, (3) branch labeling, (4) quantification, and (5) visualization. We have tested and evaluated the proposed algorithms using simulated images of multi-branch vessels and real confocal microscopic images of the vessels in rat brains. Experimental results illustrate performance of the methods and usefulness of the results for medical image analysis applications. |
---|---|
ISSN: | 0010-4825 1879-0534 |
DOI: | 10.1016/j.compbiomed.2004.06.009 |