fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels

Metabolic fluxes may be regulated "hierarchically," e.g., by changes of gene expression that adjust enzyme capacities (Vmax) and/or "metabolically" by interactions of enzymes with substrates, products, or allosteric effectors. In the present study, a method is developed to dissec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-10, Vol.104 (40), p.15753-15758
Hauptverfasser: Daran-Lapujade, Pascale, Rossell, Sergio, van Gulik, Walter M, Luttik, Marijke A.H, de Groot, Marco J.L, Slijper, Monique, Heck, Albert J.R, Daran, Jean-Marc, de Winde, Johannes H, Westerhoff, Hans V, Pronk, Jack T, Bakker, Barbara M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metabolic fluxes may be regulated "hierarchically," e.g., by changes of gene expression that adjust enzyme capacities (Vmax) and/or "metabolically" by interactions of enzymes with substrates, products, or allosteric effectors. In the present study, a method is developed to dissect the hierarchical regulation into contributions by transcription, translation, protein degradation, and posttranslational modification. The method was applied to the regulation of fluxes through individual glycolytic enzymes when the yeast Saccharomyces cerevisiae was confronted with the absence of oxygen and the presence of benzoic acid depleting its ATP. Metabolic regulation largely contributed to the [almost equal to]10-fold change in flux through the glycolytic enzymes. This contribution varied from 50 to 80%, depending on the glycolytic step and the cultivation condition tested. Within the 50-20% hierarchical regulation of fluxes, transcription played a minor role, whereas regulation of protein synthesis or degradation was the most important. These also contributed to 75-100% of the regulation of protein levels.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0707476104