Restraint-induced corticotrophin-releasing hormone elevation triggers apoptosis of ovarian cells and impairs oocyte competence via activation of the fas/fasl system
Mechanisms by which psychological stress damages oocytes are largely undetermined. Although a previous study showed that the stress-induced corticotrophin-releasing hormone (CRH) elevation impaired oocyte competence by triggering apoptosis of ovarian cells, how CRH causes apoptosis in ovarian cells...
Gespeichert in:
Veröffentlicht in: | Biology of reproduction 2018-10, Vol.99 (4), p.828-837 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mechanisms by which psychological stress damages oocytes are largely undetermined. Although a previous study showed that the stress-induced corticotrophin-releasing hormone (CRH) elevation impaired oocyte competence by triggering apoptosis of ovarian cells, how CRH causes apoptosis in ovarian cells and oocytes is unknown. In this study, we have examined the hypothesis that restraint stress (RS)-induced CRH elevation triggers apoptosis of ovarian cells and impairs oocyte competence through activating the Fas/FasL system. The results showed that RS of female mice impaired oocyte competence, enhanced expression of CRH and CRH receptor (CRH-R) in the ovary, and induced apoptosis while activating the Fas/FasL system in mural granulosa cells (MGCs) and oocytes. Injecting mice with CRH-R1 antagonist antalarmin significantly alleviated the adverse effect of RS on oocyte developmental potential. Treatment of cultured MGCs recapitulated the effects of CRH and antalarmin on apoptosis and Fas/FasL expression in MGCs. Silencing FasL gene by RNA interference in cultured MGCs further confirmed the involvement of the Fas/FasL system in the CRH triggered apoptosis of ovarian cells. It is concluded that the RS-induced CRH elevation triggers apoptosis of ovarian cells and impairs oocyte competence via activation of the Fas/FasL system. Summary Sentence Both in vivo and in vitro trials demonstrated that the restraint stress-induced CRH elevation in female mice triggered apoptosis of ovarian cells and impaired oocyte competence via activation of the Fas/FasL system. |
---|---|
ISSN: | 0006-3363 1529-7268 |
DOI: | 10.1093/biolre/ioy091 |