Three dimensional simulation of a DC free burning arc. Application to lightning physics
One of the mechanisms assumed to be involved in the ignition channel cut off is associated with the development of instability. Like any other electric arc, lightning channels become unstable if the provided power is insufficient. In order to study this phenomenon, ONERA in collaboration with EDF ha...
Gespeichert in:
Veröffentlicht in: | Atmospheric research 2009-02, Vol.91 (2), p.371-380 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the mechanisms assumed to be involved in the ignition channel cut off is associated with the development of instability. Like any other electric arc, lightning channels become unstable if the provided power is insufficient. In order to study this phenomenon, ONERA in collaboration with EDF has performed 3D simulations of a part of a lightning channel in order to compute the main characteristics of the arc and understand in the future the physical conditions for the ignition of instability. The model, based on the resistive magneto hydro dynamic equations, was adapted to the lightning channel context. In a first step, the results were compared to the experiment of Tanaka et al. [Tanaka, S., Sunabe, K., and Goda, Y., 2000. Three dimensional behaviour analysis of D.C. free arc column by image processing technique, XIII Int'l Conf on Gas Discharges and their applications, Glasgow.] on long electric arcs subjected to continuing current at mean sea level. A good agreement between computations and measurements was found for times greater than tens of millisecond. Results also showed that the internal resistance continuously decreases with time. Finally, this model was adapted to investigate the effects of altitude on the characteristics of the arc column. Results showed that the effects of altitudes are negligible for altitudes lower than 4 km. |
---|---|
ISSN: | 0169-8095 1873-2895 |
DOI: | 10.1016/j.atmosres.2008.07.009 |