Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology
Artificial intelligence (AI) is rapidly moving from an experimental phase to an implementation phase in many fields, including medicine. The combination of improved availability of large datasets, increasing computing power, and advances in learning algorithms has created major performance breakthro...
Gespeichert in:
Veröffentlicht in: | Canadian Association of Radiologists journal 2018-05, Vol.69 (2), p.120-135 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Artificial intelligence (AI) is rapidly moving from an experimental phase to an implementation phase in many fields, including medicine. The combination of improved availability of large datasets, increasing computing power, and advances in learning algorithms has created major performance breakthroughs in the development of AI applications. In the last 5 years, AI techniques known as deep learning have delivered rapidly improving performance in image recognition, caption generation, and speech recognition. Radiology, in particular, is a prime candidate for early adoption of these techniques. It is anticipated that the implementation of AI in radiology over the next decade will significantly improve the quality, value, and depth of radiology's contribution to patient care and population health, and will revolutionize radiologists' workflows. The Canadian Association of Radiologists (CAR) is the national voice of radiology committed to promoting the highest standards in patient-centered imaging, lifelong learning, and research. The CAR has created an AI working group with the mandate to discuss and deliberate on practice, policy, and patient care issues related to the introduction and implementation of AI in imaging. This white paper provides recommendations for the CAR derived from deliberations between members of the AI working group. This white paper on AI in radiology will inform CAR members and policymakers on key terminology, educational needs of members, research and development, partnerships, potential clinical applications, implementation, structure and governance, role of radiologists, and potential impact of AI on radiology in Canada.
L'intelligence artificielle progresse rapidement de la phase expérimentale à la phase de mise en œuvre dans de nombreux domaines, notamment la médecine. L'accès à de grands ensembles de données, la puissance croissante des ordinateurs et les avancées en matière d'algorithmes d'apprentissage ont permis de faire des pas de géant au chapitre du développement des applications d'intelligence artificielle. Au cours des cinq dernières années, des techniques comme l'apprentissage profond ont permis d'améliorer rapidement les capacités de reconnaissance d'images, de production de légendes d'images et de reconnaissance vocale. La radiologie est un domaine tout indiqué pour l'adoption précoce de ces techniques. L'intégration d'applications d'intelligence artificielle en radiologie au cours de la prochaine décennie devrait gran |
---|---|
ISSN: | 0846-5371 1488-2361 |
DOI: | 10.1016/j.carj.2018.02.002 |