Degradation of para-hydroxybenzoic acid by means of mixed microbial cultures

Olive mill wastewater contains some phenolic compounds that cause antibacterial activity of a kind that prevents biological treatment without previous dilution. Among these phenolic compounds, p-hydroxybenzoic acid (PHB) is considered to be one of the most representative. This work examines the biod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2003-01, Vol.10 (4), p.221-224
Hauptverfasser: Lallai, Antonio, Mura, Giampaolo, Palmas, Simonetta, Polcaro, Anna Maria, Baraccani, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Olive mill wastewater contains some phenolic compounds that cause antibacterial activity of a kind that prevents biological treatment without previous dilution. Among these phenolic compounds, p-hydroxybenzoic acid (PHB) is considered to be one of the most representative. This work examines the biodegradation of PHB by aerobic microbial mixed cultures previously acclimatized to glucose, which was used as an easily biodegradable model compound. Microbial growth runs were carried out in a batch reactor in the PHB concentration range of 200-1000 mg/L. In all the runs the PHB proved to be completely degradable. The specific growth rates obtained were in the range of 0.16-0.35 l/h. Experimental runs showed that the functional relationship between the specific growth rate and PHB concentration was that proposed by Monod. The kinetic constants of the Monod equation (mu(max) and K(S)) and biomass yield coefficient (Y) were determined experimentally. With the parameter values thus obtained, a mathematical model that also takes account of the duration of the lag phase was employed to describe both the microbial growth and the consumption of PHB. The concentration values of the model fit well with the data obtained experimentally.
ISSN:0944-1344
1614-7499
DOI:10.1065/espr2001.12.104.3