One Enzyme To Build Them All: Ring-Size Engineered Siderophores Inhibit the Swarming Motility of Vibrio

Bacteria compete for ferric iron by producing siderophores, and some microbes engage in piracy by scavenging siderophores of their competitors. The macrocyclic hydroxamate siderophore avaroferrin of Shewanella algae inhibits swarming of Vibrio alginolyticus by evading this piracy. Avaroferrin, as we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2018-05, Vol.13 (5), p.1153-1158
Hauptverfasser: Rütschlin, Sina, Gunesch, Sandra, Böttcher, Thomas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacteria compete for ferric iron by producing siderophores, and some microbes engage in piracy by scavenging siderophores of their competitors. The macrocyclic hydroxamate siderophore avaroferrin of Shewanella algae inhibits swarming of Vibrio alginolyticus by evading this piracy. Avaroferrin, as well as related putrebactin and bisucaberin, are produced by the IucC-like synthetases AvbD, PubC, and BibCC. Here, we have established that they are capable of synthesizing not only their native product but also other siderophores. Exploiting this relaxed substrate specificity by synthetic precursors generated 15 different ring-size engineered macrocycles ranging from 18- to 28-membered rings, indicating unprecedented biosynthetic flexibility of the enzymes. Two of the novel siderophores could be obtained in larger quantities by precursor-directed biosynthesis in S. algae. Both inhibited swarming motility of Vibrio and, similar to avaroferrin, the most active one exhibited a heterodimeric architecture. Our results demonstrate the impact of minor structural changes on biological activity, which may trigger the evolution of siderophore diversity.
ISSN:1554-8929
1554-8937
DOI:10.1021/acschembio.8b00084