Oxidative stress and brain aging: is zinc the link?
Zn(2+) dyshomeostasis has been strongly linked to neuronal injury in many neurological conditions. Toxic accumulation of intracellular free Zn(2+) ([Zn(2+)](i)) may result from either flux of the cation through glutamate receptor-associated channels, voltage-sensitive calcium channels, or Zn(2+)-sen...
Gespeichert in:
Veröffentlicht in: | Biogerontology (Dordrecht) 2006-10, Vol.7 (5-6), p.307-314 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Zn(2+) dyshomeostasis has been strongly linked to neuronal injury in many neurological conditions. Toxic accumulation of intracellular free Zn(2+) ([Zn(2+)](i)) may result from either flux of the cation through glutamate receptor-associated channels, voltage-sensitive calcium channels, or Zn(2+)-sensitive membrane transporters. Injurious [Zn(2+)](i) rises can also result from release of the cation from intracellular sites such as metallothioneins (MTs) and mitochondria. Chronic inflammation and oxidative stress are hallmarks of aging. Zn(2+) homeostasis is affected by oxidative stress, which is a potent trigger for detrimental Zn(2+) release from MTs. Interestingly, Zn(2+) itself is a strong inducer of oxidative stress by promoting mitochondrial and extra-mitochondrial production of reactive oxygen species. In this review, we examine how Zn(2+) dyshomeostasis and oxidative stress might act synergistically to promote aging-related neurodegeneration. |
---|---|
ISSN: | 1389-5729 1573-6768 |
DOI: | 10.1007/s10522-006-9045-7 |