10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis

Lactococcus lactis is a Gram-positive lactic acid bacterium that, in addition to its traditional use in food fermentations, is increasingly used in modern biotechnological applications. In the last 25 years great progress has been made in the development of genetic engineering tools and the molecula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2005-10, Vol.68 (6), p.705-717
Hauptverfasser: Mierau, Igor, Kleerebezem, Michiel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lactococcus lactis is a Gram-positive lactic acid bacterium that, in addition to its traditional use in food fermentations, is increasingly used in modern biotechnological applications. In the last 25 years great progress has been made in the development of genetic engineering tools and the molecular characterization of this species. A new versatile and tightly controlled gene expression system, based on the auto-regulation mechanism of the bacteriocin nisin, was developed 10 years ago--the NIsin Controlled gene Expression system, called NICE. This system has become one of the most successful and widely used tools for regulated gene expression in Gram-positive bacteria. The review describes, after a brief introduction of the host bacterium L. lactis, the fundaments, components and function of the NICE system. Furthermore, an extensive overview is provided of the different applications in lactococci and other Gram-positive bacteria: (1) over-expression of homologous and heterologous genes for functional studies and to obtain large quantities of specific gene products, (2) metabolic engineering, (3) expression of prokaryotic and eukaryotic membrane proteins, (4) protein secretion and anchoring in the cell envelope, (5) expression of genes with toxic products and analysis of essential genes and (6) large-scale applications. Finally, an overview is given of growth and induction conditions for lab-scale and industrial-scale applications.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-005-0107-6