Marine shallow-water hydrothermal activity and mineralization at the Wakamiko crater in Kagoshima bay, south Kyushu, Japan

Submarine hydrothermal fluid emanation from a small sediment mound associated with bubbling gas was observed in the Wakamiko crater that is located 5 km offshore at 200 m depth in Kagoshima bay, southern Kyushu, Japan. In 2003 and 2005, surface sediments (up to 30 cm) from inside and outside of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of volcanology and geothermal research 2008-06, Vol.173 (1), p.84-98
Hauptverfasser: Ishibashi, Jun-ichiro, Nakaseama, Miwako, Seguchi, Mariko, Yamashita, Toru, Doi, Shinsuke, Sakamoto, Takeaki, Shimada, Kazuhiko, Shimada, Nobutaka, Noguchi, Takuroh, Oomori, Tamotsu, Kusakabe, Minoru, Yamanaka, Toshiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Submarine hydrothermal fluid emanation from a small sediment mound associated with bubbling gas was observed in the Wakamiko crater that is located 5 km offshore at 200 m depth in Kagoshima bay, southern Kyushu, Japan. In 2003 and 2005, surface sediments (up to 30 cm) from inside and outside of the hydrothermal mound were sampled using the submersible ROV Hyper-Dolphine (JAMSTEC). Chemistry of pore fluids inside the mound showed a clear difference from those collected from outside the mound, which is explained by mixing of the ascending hydrothermal component and seawater. Estimated chemical composition of the hydrothermal end member suggests that the fluid experienced hydrothermal interaction at a temperature range of about 175 to 200 °C. This is consistent with the observed mound temperature of 137 °C. Hydrothermal minerals such as barite, stibnite, and realgar were identified in the mound sediment, suggesting their precipitation due to mixing of the ascending hydrothermal fluid with seawater. Isotopic composition of the hydrothermal endmember can be explained by mixing product of seawater, magmatic water and meteoric water. The marine shallow-water hydrothermal system in the Wakamiko crater is considered to be driven by a magmatic heat source beneath the crater, which also contributes elements such as arsenic, antimony, mercury and magmatic water to the hydrothermal fluid.
ISSN:0377-0273
1872-6097
DOI:10.1016/j.jvolgeores.2007.12.041