Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials

Mesoporous silica materials have a potential application for enzyme immobilization, which increases the stability of enzymes. We report the development of a novel detection method based on biosensors comprising an immobilized enzyme in mesoporous silica materials (i.e., FSM8.0 or P123-M), an electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2008-12, Vol.135 (1), p.268-275
Hauptverfasser: Shimomura, Takeshi, Itoh, Tetsuji, Sumiya, Touru, Mizukami, Fujio, Ono, Masatoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mesoporous silica materials have a potential application for enzyme immobilization, which increases the stability of enzymes. We report the development of a novel detection method based on biosensors comprising an immobilized enzyme in mesoporous silica materials (i.e., FSM8.0 or P123-M), an electrochemical mediator (i.e., quinone), and an electrochemical cell, using the enzyme formaldehyde dehydrogenase. These biosensors exhibit a rapid response and high sensitivity, and they can detect 1.2 μM of formaldehyde in an aqueous solution (corresponding to sub-ppb atmospheric concentration of formaldehyde). Furthermore, the sensors exhibit high selectivity, reusability, and a remarkable storage stability (stable over 80 days), indicating that formaldehyde dehydrogenase retains its highly ordered structure in these mesoporous silica materials. These results indicate that mesoporous silica materials can provide favorable methods for enzyme immobilization on the electrode and they are useful for developing high-performance electrochemical biosensors.
ISSN:0925-4005
1873-3077
DOI:10.1016/j.snb.2008.08.025