Novel Phase I Dose De-escalation Design Trial to Determine the Biological Modulatory Dose of the Antiangiogenic Agent SU5416

Purpose: To determine the biological modulatory dose of SU5416, we employed a novel trial design, where “dose de-escalation” was based on demonstrable biological changes observed at the maximum tolerated dose. If such an effect was shown, dose de-escalation to a predefined dose level would occur to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2005-11, Vol.11 (21), p.7938-7944
Hauptverfasser: Dowlati, Afshin, Robertson, Kelly, Radivoyevitch, Tomas, Waas, John, Ziats, Nicholas P, Hartman, Paul, Abdul-Karim, Fadi W, Wasman, Jay K, Jesberger, Jack, Lewin, Jonathan, McCrae, Keith, Ivy, Percy, Remick, Scot C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: To determine the biological modulatory dose of SU5416, we employed a novel trial design, where “dose de-escalation” was based on demonstrable biological changes observed at the maximum tolerated dose. If such an effect was shown, dose de-escalation to a predefined dose level would occur to determine if the lower dose exhibited the same amount of pharmacodynamic effect as the higher dose. Experimental Design: Ten patients with advanced solid tumors were enrolled at each dose level. One of the following pharmacodynamic effects was considered significant: ( a ) a 35% decrease in microvessel density in sequential tumor biopsies and ( b ) a 35% decrease in blood flow within tumor as assessed by dynamic contrast-enhanced magnetic resonance imaging. In addition, soluble E-selectin, soluble intercellular adhesion molecule, soluble vascular cell adhesion molecule, and plasma vascular endothelial growth factor were measured sequentially. Results: Nineteen patients were enrolled. Sequential tumor biopsies in all evaluable patients showed an increase in microvessel density. Only one patient met the intended pharmacodynamic end point of >35% reduction in blood flow. There was a significant increase in both soluble E-selectin and soluble intercellular adhesion molecule levels pretreatment versus levels at the time of removal of patients from study ( P = 0.04 and P = 0.0007, respectively). Levels of serum fibrinogen rose with therapy. There was a trend toward increase in plasma vascular endothelial growth factor levels. Conclusion: SU5416 does not result in decreased blood flow in tumors or a decrease in microvessel density. This corresponds to the lack of clinical activity seen with this agent. Our clinical trial design termed dose de-escalation is a novel approach to determine the in vivo biological effects of targeted therapies in cancer patients.
ISSN:1078-0432
1557-3265
DOI:10.1158/1078-0432.CCR-04-2538