Effect of membrane parameters on the size and uniformity in preparing agarose beads by premix membrane emulsification

Agarose microbeads were prepared by premix membrane emulsification with Shirasu-Porous Glass (SPG) membrane and Polyethylene (PE) membrane. The effects of membrane parameters, including pore size, pore size distribution, contact angle between membrane surface and the water phase, shape of pore openi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of membrane science 2009-01, Vol.326 (2), p.694-700
Hauptverfasser: Zhou, Qing-Zhu, Ma, Guang-Hui, Su, Zhi-Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Agarose microbeads were prepared by premix membrane emulsification with Shirasu-Porous Glass (SPG) membrane and Polyethylene (PE) membrane. The effects of membrane parameters, including pore size, pore size distribution, contact angle between membrane surface and the water phase, shape of pore opening and membrane thickness on size and uniformity of agarose beads were investigated in this study. The results showed that pore size distribution and shape of pore opening did not affect the emulsification results apparently within a wide range in premix membrane emulsification, not as the result in general emulsification. The contact angle between the water phase and the membrane surface must be large enough to obtain uniform-sized agarose beads in both direct membrane emulsification and premix membrane emulsification. The results also showed that the membrane pore size and thickness affected the size distribution of emulsion. Thicker membrane resulted in more uniform and smaller emulsion when the number of pass through membrane is controlled. There was a linear relationship between the number average diameter of agarose beads and membranes pores size in premix membrane emulsification. Agarose beads with diameters from 3.06 to 9.02 μm were prepared by controlling membranes pore size. The ratio of the number average diameter of agarose beads to membrane pore diameters was found to be 0.486.
ISSN:0376-7388
1873-3123
DOI:10.1016/j.memsci.2008.11.012