Gambogic Acid Efficiently Kills Stem-Like Colorectal Cancer Cells by Upregulating ZFP36 Expression

Background/Aims: Gambogic acid (GA), the main active compound of Gamboge hanburyi, has been reported to be a potential novel antitumor drug. Whether GA inhibits putative cancer stem cells (CSCs), which are considered to be the major cause of cancer treatment failure, remains largely unknown. This st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular physiology and biochemistry 2018-01, Vol.46 (2), p.829-846
Hauptverfasser: Wei, Fang, Zhang, Tong, Yang, Zhi, Wei, Jian-Chang, Shen, Hong-Fen, Xiao, Dong, Wang, Qiang, Yang, Ping, Chen, Hua-Cui, Hu, He, Chen, Zhuan-Peng, Huang, Qing, Li, Wang-Lin, Cao, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background/Aims: Gambogic acid (GA), the main active compound of Gamboge hanburyi, has been reported to be a potential novel antitumor drug. Whether GA inhibits putative cancer stem cells (CSCs), which are considered to be the major cause of cancer treatment failure, remains largely unknown. This study investigated whether GA inhibits the CSCs of colorectal cancer (CRC) and its possible mechanisms. Methods: We performed CCK8 and tumor sphere formation assays, percentage analysis of both side population and CD133 + CD44 + cells, and the detection of stem cells markers, in order to assess the role of GA in inhibiting the stem celllike features of CRC. An mRNA microarray was performed to identify the downstream gene affected by GA and rescue assays were performed to further clarify whether the downstream gene is involved in the GA induced decrease of the stem cell-like CRC population. CRC cells were engineered with a CSC detector vector encoding GFP and luciferase (Luc) under the control of the Nanog promoter, which were utilized to investigate the effect of GA on putative CSC in human tumor xenograft-bearing mice using in vivo bioluminescence imaging. Results: Our results showed that GA significantly reduced tumor sphere formation and the percentages of side population and CD133 + CD44 + cells, while also decreasing the expression of stemness and EMT-associated markers in CRC cells in vitro. GA killed stem-like CRC cells by upregulating the expression of ZFP36, which is dependent on the inactivation of the EGFR/ ERK signaling pathway. GFP+ cells harboring the P Nanog -GFP-T2A-Luc transgene exhibited CSC characteristics. The in vivo results showed that GA significantly inhibited tumor growth in nude mice, accompanied by a remarkable reduction in the putative CSC number, based on whole-body bioluminescence imaging. Conclusion: These findings suggest that GA significantly inhibits putative CSCs of CRC both in vitro and in vivo by inhibiting the activation of the EGFR/ ERK/ZFP36 signaling pathway and may be an effective drug candidate for anticancer therapies.
ISSN:1015-8987
1421-9778
DOI:10.1159/000488740