Synthesis of programmable integrases
Accurate modification of the 3 billion-base-pair human genome requires tools with exceptional sequence specificity. Here, we describe a general strategy for the design of enzymes that target a single site within the genome. We generated chimeric zinc finger recombinases with cooperative DNA-binding...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2009-03, Vol.106 (13), p.5053-5058 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Accurate modification of the 3 billion-base-pair human genome requires tools with exceptional sequence specificity. Here, we describe a general strategy for the design of enzymes that target a single site within the genome. We generated chimeric zinc finger recombinases with cooperative DNA-binding and catalytic specificities that integrate transgenes with >98% accuracy into the human genome. These modular recombinases can be reprogrammed: New combinations of zinc finger domains and serine recombinase catalytic domains generate novel enzymes with distinct substrate sequence specificities. Because of their accuracy and versatility, the recombinases/integrases reported in this work are suitable for a wide variety of applications in biological research, medicine, and biotechnology where accurate delivery of DNA is desired. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0812502106 |