Synthetic Nanofiber-Reinforced Amniotic Membrane via Interfacial Bonding

Severe damage to the ocular surface can result in limbal stem cell (LSC) deficiency, which contributes to loss of corneal clarity, potential vision loss, chronic pain, photophobia, and keratoplasty failure. Human amniotic membrane (AM) is the most effective substrate for LSC transplantation to treat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-05, Vol.10 (17), p.14559-14569
Hauptverfasser: Liu, Huanhuan, Zhou, Zhengbing, Lin, Hui, Wu, Juan, Ginn, Brian, Choi, Ji Suk, Jiang, Xuesong, Chung, Liam, Elisseeff, Jennifer H, Yiu, Samuel, Mao, Hai-Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Severe damage to the ocular surface can result in limbal stem cell (LSC) deficiency, which contributes to loss of corneal clarity, potential vision loss, chronic pain, photophobia, and keratoplasty failure. Human amniotic membrane (AM) is the most effective substrate for LSC transplantation to treat patients with LSC deficiency. However, the widespread use of the AM in the clinic remains a challenge because of the high cost for preserving freshly prepared AM and the weak mechanical strength of lyophilized AM. Here, we developed a novel composite membrane consisting of an electrospun bioabsorbable polymer fiber mesh bonded to a decellularized AM (dAM) sheet through interfacial conjugation. This membrane engineering approach drastically improved the tensile property and toughness of dAM, preserved similar levels of bioactivities as the dAM itself in supporting LSC attachment, growth, and maintenance, and retained significant anti-inflammatory capacity. These results demonstrate that the lyophilized nanofiber–dAM composite membrane offers superior mechanical properties for easy handling and suturing to the dAM, while presenting biochemical cues and basement membrane structure to facilitate LSC transplantation. This composite membrane exhibits major advantages for clinical applications in treating soft tissue damage and LSC deficiency.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.8b03087