Efficient decomposition methods for controlled-R n using a single ancillary qubit

We consider decomposition for a controlled-R gate with a standard set of universal gates. For this problem, a method exists that uses a single ancillary qubit to reduce the number of gates. In this work, we extend this method to three ends. First, we find a method that can decompose into fewer gates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-04, Vol.8 (1), p.5445-7, Article 5445
Hauptverfasser: Kim, Taewan, Choi, Byung-Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider decomposition for a controlled-R gate with a standard set of universal gates. For this problem, a method exists that uses a single ancillary qubit to reduce the number of gates. In this work, we extend this method to three ends. First, we find a method that can decompose into fewer gates than the best known results in decomposition of controlled-R . We also confirm that the proposed method reduces the total number of gates of the quantum Fourier transform. Second, we propose another efficient decomposition that can be mapped to a nearest-neighbor architecture with only local CNOT gates. Finally, we find a method that can minimize the depth to 5 gate steps in a nearest-neighbor architecture with only local CNOT gates.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-23764-x