Low-frequency sea-level variability in the South China Sea and its relationship to ENSO
Sea-level variability in the South China Sea was investigated based on satellite altimetry, tide-gauge data, and temperature and salinity climatology. The altimetric sea-level results clearly reveal three distinct amphidromes associated with the annual cycle. The annual sea level is higher in fall/w...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied climatology 2009-06, Vol.97 (1-2), p.41-52 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sea-level variability in the South China Sea was investigated based on satellite altimetry, tide-gauge data, and temperature and salinity climatology. The altimetric sea-level results clearly reveal three distinct amphidromes associated with the annual cycle. The annual sea level is higher in fall/winter in the coast and shelf region and lower in summer/fall in the central sea, agreeing well with independent tide-gauge data. Averaged over the deep basin (bottom depth > 2,000 m), the annual cycle can be approximately accounted for by the steric height relative to 700 db. Significant interannual sea-level change is observed from altimetry and tide-gauge data. The interannual and longer-term sea-level variability in the altimetric data is negatively correlated (significant at the 95% confidence level) with the El Niño - Southern Oscillation (ENSO), attributed in part to the steric height change. The altimetric sea-level rise rate is 1.0 cm/year for the period from 1993 to 2001, which is consistent with the rate derived from coastal tide-gauge data and approximately accountable for by the steric height calculated relative to 700 db. The tide-gauge sea-level (steric height) rise rate of 1.05 (0.9) cm/year from 1993 to 2001 is much larger than that of 0.22 (0.12) cm/year for the period from 1979 to 2001, implying the sensitivity to the length of data as a result of the decadal variability. Potential roles of the ENSO in the interannual and longer-term sea-level variability are discussed in terms of regional manifestations such as the ocean temperature and salinity. |
---|---|
ISSN: | 0177-798X 1434-4483 |
DOI: | 10.1007/s00704-008-0070-0 |